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. Introduction

Metabolite profiling of urine by LC–MS followed by multivariate
nalysis emerges as a powerful tool in the study of drug metabolism
1]. The first publications were related to investigations in ani-

als [2,3], since human studies are complicated by a number of
actors. The dose that can be administered in humans is limited
y a large safety factor below putative toxicity, so that metabo-
ite concentrations are smaller and sample enrichment may be
equired. Differences between human individuals are much larger
han in animal experimentation. This is due not only to genetic
ifferences, but also to gender, age, and lifestyle [4], nutrition [5,6],
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exposures. Modern liquid chromatography–tandem mass spectrometry is
s but can simultaneously analyze whole classes of urine constituents with
ificity. Individual differences in the composition of urine are very large
ber of problems that are not encountered in animal experimentation. In
ether analysis of glucuronides as a class could reflect differences between
he polymorphic activity of the cytochrome P450 enzyme CYP2D6. From
ad been classified for CYP2D6 activity, urine of 12 “poor metabolizers”
s” was collected 90 min after ingestion of 10 mg of the antitussive drug
analyzed for glucuronides. Methods development included the following
amples to equal creatinine concentration to avoid differences between
d ion suppression; on-line enrichment of low-level analytes by column
s. theoretical multiple reaction monitoring; use of quality control samples
rge sample series; peak extraction and handling of null entries to build the
ansformation and different scaling procedures; principal component anal-
ysis. Our results show that an optimized procedure not only identified the
ictors of CYP2D6-specific metabolic pathways but also indicated the pres-

own path-specific glucuronide metabolites. We conclude that metabolite
fluids by modern mass spectrometric methodology may help characterize
me useful in drug development and personalized pharmacotherapy.

© 2008 Elsevier B.V. All rights reserved.
specific chemical exposures [7], or differences in the intestinal flora
[8]. This results in a wide variety of urinary compositions, which
may affect chromatographic and mass spectrometric behaviour of
the analytes. This aspect requires particular attention in biofluids
like urine, because differences in composition and concentration
can influence the ionization process, a phenomenon known as ion
suppression/enhancement [9,10]. Dilution of human urine due to
increased water consumption is a major confounder. It can result
in more than 10-fold variation in the concentration of urinary
constituents. Concentration adjustment before the analysis might
therefore, be required to harmonize retention times and ion yields
for all samples and to avoid bias in the multivariate analyses that
may be introduced by mathematical adjustment of the data.

LC–MS is a common tool for the analysis of specific compounds
of known structure, and the respective methods provide good accu-
racy and precision if isotope-labelled internal standards can be
used. In metabolomics this is not practicable because of the large
number of analytes with unknown structure at the outset of the

http://www.sciencedirect.com/science/journal/15700232
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analysis. In this situation it is crucial at least that each peak with a
given mass and retention time represents the same compound in
all samples and that the peak area is proportional to the amount
present in all samples. Reproducibility of retention time and peak
area is required not only between samples with different compo-
sition but also for series of measurements performed over many
hours. Repeated measurement of the same sample (“quality control
samples”) is necessary to check the stability of the LC–MS analyses

with time.

In the first part of this manuscript, we exemplify the problems
addressed above and show how we solved them in the anal-
ysis of human urine for glucuronides. This is a major class of
phase II metabolites of drugs, chemicals, and endogenous com-
pounds and is well suited for specific and sensitive measurement
by LC–MS/MS techniques [11]. In the second part, we investigated
whether the optimized analytical methodology could be com-
bined with multivariate analyses for (i) metabolite profiling, (ii)
investigating differences between individuals and subpopulations,
and (iii) finding so far unknown glucuronic acid metabolites. As
probe drug, we used the antitussive agent dextromethorphan (DEX)
for which two glucuronides, dextrorphan-O-glucuronide (DORGlu)
and 3-hydroxymorphinan-O-glucuronide (HOMGlu) represent the
major urinary metabolites. As illustrated in Fig. 1, formation of
the O-demethylated metabolite DORGlu requires CYP2D6 and UGT
activity, while HOMGlu in addition requires CYP3A activity for N-
demethylation. A genetic polymorphism in the activity of CYP2D6
is known. Eight percent of the Caucasian population lack CYP2D6
activity [12] and are named poor metabolizers (PM). They can be
distinguished from extensive metabolizers (EM) on the basis of the

Fig. 1. Main pathways for dextromethorphan metabolism in humans. Abbre-
viations: DEX, dextromethorphan; DOR, dextrorphan; DORGlu, dextrorphan-O-
glucuronide; MOM, 3-methoxymorphinan; HOM, 3-hydroxymorphinan; HOMGlu,
3-hydroxymorphinan-O-glucuronide; CYP2D6, cytochrome P450 2D6; CYP3A,
cytochrome P450 3A subfamily; UGT, UDP-glucuronosyltransferase.
B 871 (2008) 349–356

ratio of the concentrations DEX/DOR measured in plasma, urine, or
saliva [13].

Statistical aspects are a focus in this part of the manuscript.
Transformation of the raw data, scaling procedures, and princi-
pal component analyses vs. discriminant analyses are discussed.
Finally, information in the loadings plot was used not only
to locate the CYP2D6-specific glucuronide metabolites shown
in Fig. 1 but also to find additional, so far unknown glu-
curonide metabolites. Their structural information was derived
from information-dependent acquisition (IDA) of enhanced prod-
uct ion (EPI) spectra using both negative and positive ionization.

2. Experimental

2.1. Chemicals

RotisolvTM HPLC gradient grade water was from Roth, Karlsruhe,
Germany, HPLC gradient grade acetonitrile from Fluka, Taufkirchen,
Germany. DORGlu was from Toronto Research Chemicals Inc.,
Canada. HOMGlu was isolated as described [13]. All other chemicals
were of analytical grade from Merck, Darmstadt, Germany. Dex-
tromethorphan hydrobromide for human use was from FAGRON
GmbH, Barsbüttel, Germany.

2.2. Urine sampling and phenotyping for CYP2D6

In a laboratory course in pharmacology and toxicology 152 stu-
dents of the Würzburg University registered for the study that had
been approved by the Regional Ethical Committee of the Würzburg
University. Each person gave informed written consent. After void-
ing the bladder, participants ingested 10 mg dextromethorphan
hydrobromide dissolved in 100 mL water. After 90 min urine sam-
ples were collected, divided into aliquots and stored at −20 ◦C.
Blank urine samples were obtained from six female and six male
volunteers and stored at −20 ◦C until analysis.

Analysis of DEX and the CYP2D6-dependent metabolite DOR
was done according to a previously published method [13] with
the following minor modifications: To 500 �L urine 5 �L internal
standard levallorphan (2.3 pmol/�L) were added. The sample was
centrifuged at 10,000 × g for 10 min and 10 �L of the supernatant
were injected. Chromatography was performed isocratically with
water/acetonitrile 70/30 (v/v), containing 0.1% formic acid (FA).

Individuals were classified on the basis of a metabolic ratio MR
calculated by dividing the concentration of the parent drug DEX

by the concentration of the CYP2D6-dependent metabolite DOR
(MR = [DEX/DOR]) in urine [13–15]. Of the 152 persons phenotyped
for CYP2D6 activity 12 were identified as PM and the remaining 140
as EM. For metabolite profiling, urine samples of all 12 PM plus 35
randomly chosen EM were used, which resulted in 47 samples.

2.3. Urine preparation (adjustment for dilution)

Creatinine concentrations were determined in the Central Lab-
oratory of the University Hospital using a COBAS INTEGRA system
(Roche Diagnostics) with enzymatic colour test. The blank urine
samples contained 25–359 mg/dL creatinine. They were either used
as such (=crude) or diluted with a solution containing 120 mM urea
and 60 mM NaCl to give a final creatinine concentration of 25 mg/dL
(=creatinine-adjusted). To 500 �L sample (crude or creatinine-
adjusted) 2 �L solution of DORGlu standard (100 pmol/�L) were
added. For quality control (QC) samples a 24-h blank urine sam-
ple from one individual was creatinine-adjusted to 25 mg/dL
and treated as above. For glucuronide metabolite profiling after
DEX ingestion all urine samples were creatinine-adjusted. Before
LC–MS/MS analysis 2 �L FA 100% were added to all samples. After
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centrifugation at 10,000 × g for 10 min 250 �L of the supernatant
were injected.

2.4. Liquid chromatography/mass spectrometry; quality controls

The on-line extraction LC–MS/MS system had been described
[16]. In brief, the autosampler (Agilent Series 1100, Waldbronn,
Germany) introduced the sample into the system and pump
1 (Agilent Series 1100) carried the mobile phase (0.1% FA) at
750 �L/min to load the sample on the trap column (ReproSil-
Pur C18-AQ, 33 mm × 3 mm, 5 �m, Maisch, Ammerbuch, Germany).
After 1.0 min the valve switched to the elution position. Pump
2 supplied a gradient to back flush the trapped analytes from
the trap column and to transfer them onto the analytical col-
umn (ReproSil-Pur C18-AQ, 150 mm × 2 mm, 3 �m, Maisch). The
mobile phase was 0.1% FA (A) and acetonitrile containing 0.1%
FA (B). The gradient started with 3% B for 1 min, increased to
60% B within 57 min, then to 90% B within 0.5 min, was held for
2 min at 90% B, and decreased to 3% B in 1 min. After an equili-
bration time of 9.5 min the next sample was injected. The slow
gradient of 60 min was used to limit the number of molecules in
the ion source at any given time in order to avoid ion suppres-
sion.

The column eluant was introduced into the MS/MS system
consisting of a TURBO-Ionspray source operated in the nega-
tive ion mode and a hybrid quadrupole linear ion trap (QTRAP,
Applied Biosystems/MDS Sciex, Concord, Ont.). The instrument
parameters were source voltage (IS) −4.2 kV, vaporizer temper-
ature 400 ◦C, curtain gas 30 psi, nebulizer gas 45 psi, turbogas
50 psi, CAD gas 10 psi. The compound specific parameters for glu-
curonides were obtained by infusion of DORGlu standard using
the quantitative optimization function of Analyst software 1.4.1.
They were as follows: declustering potential (DP) −50 V, entrance
potential (EP) −9 V, collision energy (CE) −30 V, collision cell
exit potential (CXP) −1 V. Glucuronides were recorded by mon-
itoring theoretical transitions specific for glucuronides in the
mass range from m/z 217 to m/z 466 with a dwell time of
5 ms each. Q1 selected the deprotonated molecular ion [M−H]−

and Q3 the specific fragment of glucuronic acid conjugates m/z
113. In this way 250 multiple reaction monitoring (MRM) transi-
tions (217 → 113, 218 → 113. . .465 → 113, 466 → 113) were acquired
simultaneously.
Samples were analyzed in random order. Before the first sample
three QC samples were measured to equilibrate the system. Then
after every five samples one QC sample was inserted.

2.5. Acquisition of product ion spectra

Enhanced product ion spectra were recorded using information-
dependent acquisition. In the negative ion mode the following
MRM transitions were used as a survey scan (418 → 113, 432 → 113,
446 → 113, 448 → 113, dwell time 200 ms each). When the inten-
sity of the MRM signal exceeded the threshold (500 counts), Q1
filtered the parent ion that was then fragmented in Q2 with a col-
lision energy of −30 V. Fragment ions were trapped in Q3 before
they were scanned from m/z 50 to 500 at a scan rate of 4000 amu/s.
The parent ion was then excluded from fragmentation for 40 s. The
other instrument and LC parameters were the same as stated above.
In the positive ion mode the MRM transitions used as a survey scan
were (420 → 244, 434 → 258, 448 → 272, 450 → 274). The instru-
ment parameters were: IS 5 kV, DP 31 V, EP 10 V, CE 35 V, CXP 6 V and
the intensity threshold 2 × 104 counts. All data acquisition was done
using the Analyst 1.4.1 software (Applied Biosystems, Darmstadt,
Germany).
B 871 (2008) 349–356 351

2.6. Peak extraction, data transformation and scaling

Peak areas were extracted from the MRM chromatograms using
MarkerViewTM software version 1.2.0.1 (Applied Biosystems/MDS
Sciex, Canada). Peaks were named by mass and RT in the form
“m/z RT”. Parameters were optimized by visual inspection of the
transitions for the two known glucuronide metabolites DORGlu
and HOMGlu in order to ascertain that the same peak in all
chromatograms was attributed to the same variable in all sam-
ples. This resulted in the following selection: for peak finding:
smoothing half width 1 point, baseline sub. window 1.0 min, noise
percentage 50%, peak-splitting factor 2 points; for filtering: mini-
mum required intensity 2000 cps, minimum peak width 3 points,
minimum signal/noise 5.0, maximum number of peaks 250 or
500 or 5000; retention time tolerance for sample alignment:
1.0 min.

The data matrix was imported into the SIMCA-PTM software
(version 11.5, Umetrics, Umea, Sweden) for multivariate analy-
ses. Each variable was log10 transformed to achieve approximate
normal distribution. As the values for some variables in some obser-
vations were zero, a constant of 30 was added, corresponding to half
of the minimum value observed. The variables were mean-centred
before the significant components were calculated using the aut-
ofit function and sevenfold cross-validation. As scaling procedures,
no scaling at all, scaling by the square root of the standard devi-
ation (also known as Pareto scaling) and scaling by the standard
deviation (unit variance scaling) were performed in the search of
the models with highest predictive ability. Data were analyzed by
principal component analysis and by discriminant analysis based
on projections to latent structures by means of partial least-squares
(PLS-DA).

3. Results

3.1. Theoretical MS/MS transitions to monitor glucuronides

Glucuronides share a common characteristic fragment of m/z
113 [11] in the negative ion mode. In preliminary experiments, we
therefore, tried a precursor ion scan to monitor this class of metabo-
lites. However, the data extraction step did not give reproducible
results, possibly because m/z does not show up as discrete values
in this acquisition mode. Alternatively, each m/z of the precursor
ion scan was replaced by a transition in the form of m/z → 113,

i.e., we used the mode of theoretical MRM. The resulting two-
dimensional data could now easily be inspected in the extracted
ion chromatogram and gave reproducible results. Using the range
of m/z 217 to m/z 476 (250 transitions) included the majority of
peaks.

3.2. Sample enrichment

Using direct injection of 10 �L urine, as usually done in high-
dose animal studies resulted only in a small number of peaks.
Therefore, a sample enrichment step was required for our low-dose
human study. Both solid phase extraction [17] and online sample
cleanup by column switching [18] had successfully been applied for
metabolite profiling in previous studies. With column switching the
analytes are retained on a trap column while matrix components
are flushed to waste. Then a valve is switched to backflush the ana-
lytes onto an analytical column connected to the mass spectrometer
[16]. In order to optimize the experimental parameters, preliminary
experiments with control human urine spiked with DORGlu, the
primary metabolite of DEX, were performed. Injection of 250 �L
urine adjusted to pH 3 and a washing time of 1 min resulted in
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highest intensities and a maximum number of peaks. A larger urine
volume did not increase the intensities significantly due to signal
suppression. A longer washing time resulted in loss of early eluting
peaks.

3.3. Quality control samples

When analyzing a batch of samples the first requirement is
that the instrument conditions are stable over the entire period of
analysis. This means that measuring the same sample several times
should only give a small variation in RT and peak area. For this pur-
pose QC samples are inserted between groups of study samples.
When the variation in these QCs is within adequate limits (relative

standard deviations (R.S.D.) less than 15–20% [19,20]), the mea-
surement of the study samples is considered acceptable. Our QC
samples were taken from a 24-h control urine sample from one
individual. Alternatively, QCs can consist of a mixture of all study
urines, thus, representing an “average” sample [21].

3.4. Adjustment for creatinine concentration

With the variability of the QC being acceptable, the next
step was the evaluation of the variability due to matrix effects.
In conventional quantitative LC–MS methods, internal standards,
preferentially stable isotope-labelled analogues are used to account
for differences. In metabolomics this approach is not possible
because most of the analytes are unknown. Therefore, each peak
area needs to be a quantitative measure for the amount of the
respective analyte, as the peak area of each compound will later
be used to create the data matrix. This requirement is difficult to
meet in mass spectrometry, particularly with a matrix like urine.
Depending on the liquid intake, human urine samples can vary
greatly in volume voided over a given period of collection. This in
turn affects the concentrations of excreted compounds. As the ion-

Fig. 2. Retention times of four different peaks eluting between 17 min and 20 min. Urine s
©) or after adjustment to 25 mg creatinine/dL (+). The x-axis indicates the original creatin
B 871 (2008) 349–356

ization process is known to be susceptible to concentration [22],
matrix effects were evaluated.

Twelve human urine samples with creatinine concentrations
from 25 mg/dL to 359 mg/dL were analyzed as such (=crude) as well
as after dilution of the urines to 25 mg/dL creatinine. DORGlu was
added as standard. Three QCs were measured in the beginning and
one after every six samples. The first two QC showed abnormal RT
and peak area. Thereafter the system was stable: the RTs of the
residual QCs were within 0.2 min and the peak areas of the DOR-
Glu standard showed a R.S.D. of 9.5%. While these small variations
in the QCs were acceptable, the results of the crude samples were
not satisfactory. The open circles in chart A of Fig. 2 show the RTs
of the DORGlu peak as a function of the original creatinine con-

centration. Values ranged from 17.1 min to 19.5 min and showed an
increase with creatinine. The most pronounced change occurred
between 25 mg/dL and 100 mg/dL creatinine. RTs of three unknown
peaks eluting in the same time window were also analyzed. Fig. 2C
for peak 295 18 shows a situation almost superposable to the one
observed for DORGlu. Under such conditions, RT correction could
theoretically be performed by the software. However, chart B shows
that the RT of peak 326 18 decreased with increasing creatinine,
and the effect became apparent only at higher creatinine levels.
Chart D shows an example of a peak (266 19) that was barely
affected. Since correct peak alignment is crucial for multivariate
analyses, measures to improve the situation were sought. The idea
was to make the urine samples as similar as possible for all aspects
that might affect the analysis. Diluting the samples to equal creati-
nine concentration improved the situation substantially. The plus
signs in Fig. 2A show that RT of DORGlu plotted as a function of
the concentration in the original urine now ranged from 17.1 min
to 17.5 min. For the three unknown peaks (charts B–D) all RTs were
within 0.4 min also. Also peak areas depended on the urine concen-
tration. As shown in Fig. 3, the DORGlu peak area decreased with
increasing creatinine concentration in the crude samples (o) with a

amples with different creatinine concentrations were analyzed as such (crude urine
ine concentration.
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Fig. 3. Peak area of DORGlu standard added to crude urine (©) or creatinine-
adjusted urine (+) in relation to the creatinine concentration. The x-axis indicates

the original creatinine concentration.

R.S.D. of 63%, while the diluted samples (+) were within 13% R.S.D.
Adjusting the samples to equal creatinine concentration resulted in
an acceptable variation of both RT and peak area.

3.5. Profiling of glucuronides

The optimized method was applied to urine samples of 12
PM plus 35 EM after ingestion of 10 mg DEX. Fig. 4 shows TIC of
the LC–MS/MS chromatograms of the 250 theoretical transitions
acquired to monitor the glucuronides. Fig. 4A originates from an
EM, whereas Fig. 4B was from a PM for CYP2D6. It was impossible
by visual inspection to discern the difference in metabolizer phe-
notype or to pinpoint those peaks that could be metabolites of the
administered drug. The major peaks originated from endogenous
metabolites, constituents of food, or environmental exposures. The
small dose of DEX did not result in metabolites of high intensity.

Fig. 4. Total ion chromatograms (TIC) of 250 MRM transitions specific for glu-
curonides in urine of an extensive metabolizer (EM; chart A) and a poor metabolizer
(PM; chart B) for CYP2D6 after ingestion of 10 mg DEX.
Fig. 5. Scores plot of a principal component analysis (PCA) of urinary glucuronides
of extensive metabolizers and poor metabolizers for CYP2D6.

3.5.1. Data transformation and principal component analysis
The first principal component analysis was performed with all

samples, i.e., QC samples were included. The latter group clustered
with the exception of the first two samples run at the beginning of
the series. This indicates that the analytical conditions were stable
over the time of measurement after the initial two runs necessary to
equilibrate the system. This was confirmed by the DORGlu standard
that had been added to the QCs. RT variation was within 0.2 min
and the R.S.D. of the peak area was 11.3% over the almost 71 h of
measurement.

New data matrices with the 47 study samples only were then
generated, in order to exclude any influence of the QC samples
on the data extraction. The data were log-transformed and mean-
centred. Principal component analysis showed that there was one
outlier in the samples. When examining the data matrix it was
evident that this sample contained peaks that were absent in all
other samples. Therefore, this sample (an EM phenotype) was dis-
carded for the subsequent analyses. Fig. 5 shows the scores plot of
the first two principal components of principal component analy-
sis of the remaining 46 samples. The explained variation was 14%
and 9% for PC1 and PC2, respectively. While PM tended to locate at
the lower left-hand side, neither PC1 nor PC2 separated them from
the EM. As already seen in the chromatograms, the largest differ-
ence between samples resulted from interindividual factors other

than differences in DEX metabolites. In animal studies, the homoge-
neous conditions for genetics and lifestyle often makes separation
by the first PC possible [23–26].

3.5.2. Discriminant analysis, predictive ability, scaling
In order to more clearly separate EM from PM and find the

responsible metabolites discriminant analysis was performed. In
search for the best model three data matrices differing in the num-
ber of extracted peaks were generated after ranking for peak area:
250, 500 and 2016 (maximum number found). Three components
were significant for all models. With 250 peaks (variables), the
goodness of fit given by the explained variation (R2Y cumulative)
was 0.925. The predictive ability of the model determined by sev-
enfold cross-validation as given by the goodness of prediction Q2

was 0.596. A model with Q2 > 0.5 is generally considered good for
the prediction of unknown samples [27]. Using 500 peaks for mod-
elling resulted in slightly higher goodness of fit (R2Y = 0.930) and
clearly better predictive ability (Q2 = 0.641). Inspection of the vari-
ables showed that the M + 1 isotopes of the two main glucuronide
metabolites were not present in the data matrix with 250 peaks.
The model generated with the maximum number of peaks found
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Fig. 6. Scores plot of a discriminant analysis (PLS-DA) of urinary glucuronides of
extensive metabolizers and poor metabolizers for CYP2D6.

by MarkerViewTM (2016) did not result in any significant further
improvement, probably because of the statistical noise introduced

by peaks that were not above background in all samples.

Fig. 6 shows the scores plot of the first two components resulting
from the PLS-DA model with 500 variables that had been log-
transformed and mean-centred. The explained variation in Y for
t [1] and t [2] was 66% and 21%, respectively. A good separation
between PM and EM was achieved, with the PM in the lower left-
hand corner.

Using the data set with 500 variables we also tested the effect of
different types of scaling of the data on the predictive ability. None
of these actions improved the predictivity of Q2 = 0.641 indicated
above. Scaling by the square root of the standard deviation (“Pareto”
scaling) resulted in Q2 = 0.608, unit variance scaling in Q2 = 0.458.
Since scaling reduces the importance of large peaks these results
indicate that the attribution of more statistical weight to small
peaks deteriorated the models.

3.6. Detection of new CYP2D6-dependent metabolites

The loadings plot of the PLS-DA model represented in Fig. 6
is shown in Fig. 7. Variables that are important for the discrimi-

Fig. 7. Loadings plot of the PLS-DA model shown in Fig. 6. Variables (�) close to the
“dummy variable Y” (�: EM for extensive, ©: PM for poor metabolizers for CYP2D6)
contribute strongly to the separation according to the metabolic phenotype. The
numbers indicate mass and retention time of the respective peak (variable).
B 871 (2008) 349–356

nation have high absolute values in PLS weights (w × c) and the
EM-specific variables show up in the upper right-hand corner of
the two-component graph shown. The main known glucuronide
metabolites of DEX, i.e., DORGlu (432 17.5 with the correspond-
ing M + 1 isotope 433 17.6) and HOMGlu (418 17.3 with the isotope
419 17.3) showed up clearly. A number of additional variables con-
tributed strongly. In order to investigate whether these compounds
were additional glucuronides formed by DEX metabolism, product
ion spectra in negative (−H+) and positive (+H+) ion modes were
acquired (mass difference = 2 Da). The results are listed in Table 1. In
the negative ion mode, all ions showed the neutral loss of 176 Da and
the glucuronide fragments 175, 113, 95 and 85 Da. The DEX-specific
fragments of the morphinan structure appeared in the positive ion
mode. The spectra of m/z 434 (RT 17.5) and m/z 420 (RT 17.3) are in
accordance with the product ion spectra of DORGlu and HOMGlu
published before [13]. The other ions in Table 1 all show some of the
characteristic fragments and most probably are also DEX metabo-
lites. The two positive ions with m/z 448 (RT 29.5 and 30.6) could
originate from the oxidation of a methylene group of DORGlu to
a carbonyl group (oxo-DORGlu, +14 Da). The positive ion with m/z
434 (RT 22.0) could be the equivalent for HOMGlu (oxo-HOMGlu,
+14 Da). The positive ion with m/z 450 (RT 19.2) could be a hydrox-
ylation product of DORGlu (hydroxy-DORGlu, +16 Da).

4. Discussion

4.1. Methods development

4.1.1. Creatinine adjustment
We have shown that the dilution of urine (“wateriness”) can

affect both retention time and ion yield of analytes. This is not tol-
erable if the data are to be used in a matrix for multivariate analysis,
where correct attribution of peaks to variables is a prerequisite.
Dilution of all urines to the same creatinine concentration markedly
improved the situation. We did not use water but a solution con-
taining 120 mM urea and 60 mM NaCl, because the concentration
of these two urinary constituents is relatively constant, irrespective
of the water consumption.

Normalization is often performed by applying a correction fac-
tor for creatinine after the measurements. This can be misleading if
the creatinine concentration is determined by factors other than the
water consumption. Since creatinine is an excretion product related
to muscle activity males excrete more creatinine than females per

kg body weight. This difference will be reflected in the principal
component analysis by a separation of males and females, which
may detract from the observation of other differences between
subgroups. The confounding effect is lessened with a discriminant
analysis where individuals are attributed to a class according to
criteria that are independent of gender.

It has to be noted that normalizing the urine samples before
analysis improves the quality of the data matrix but does not over-
come the gender difference. In our analysis, differences between EM
and PM were so dominant that minor confounding by gender did
not render a classification impossible. Whether males and females
tend to cluster within the two subgroups EM and PM could not be
investigated because of the anonymity of the data.

4.1.2. Logarithmic data transformation and scaling for
multivariate analysis

Principal component analysis and DA provide best results if the
variables are normally distributed in the samples (=individuals).
This criterion may be met by analytes that are present in all indi-
viduals and at a concentration of the same order of magnitude.
In human urine many compounds are not present in some of the
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Table 1
Mass, retention times and product ion spectra of the variables that contributed mos

Ionization m/z of parent ion Retention time

Neg 432 17.5
Pos 434 17.5

Neg 418 17.3
Pos 420 17.3

Neg 446 29.5
Pos 448 29.5

Neg 446 30.6
Pos 448 30.6

Neg 432 22.0
Pos 434 22.0

Neg 448 19.2
Pos 450 19.2

a Abbreviations: DORGlu, dextrorphan-O-glucuronide; HOMGlu, 3-hydroxymor
group; Oxo-HOMGlu, HOMGlu with a methylene oxidized to a carbonyl group; Hyd

samples due to differences in food or drug intake or not detectable
because of differences in metabolism. These samples show a null
entry in the matrix for the corresponding variable, while the entries
of the other samples often extend over several orders of magnitude.
For instance, the peak area of DORGlu ranged from undetectable
to 19,000 and the distribution was skewed to the right (positive
skewness). Using these original data, no significant model could be
achieved, irrespective of the scaling procedure.

In such a situation, logarithmic transformation can reduce the
degree of skewness as well as the minimum to maximum ratio,
i.e., achieve approximate normality [27]. Since log(0) is undefined,
a value >0 has to be added to the null entries; we used half
the minimum value appearing in the data matrix (30). Using this
procedure, the log-transformed values ranged from 1.48 [log10(30)]
to 4.28 [log10(30)] for DORGlu and to 5.46 when including all vari-
ables. Significant models were now accomplished. Using 10 or 1
instead of 30 to be added to the null entries did not affect the model
characteristics noticeably.

Measured values (or their logarithm) are not used as such for the
multivariate analyses. The data are mean-centred or mean-centred
and scaled. Mean centring uses the difference between the sample
value and the mean of the respective variable over all samples. This
mode gives highest importance to variables that show largest abso-
lute differences between individuals or groups of individuals. In
“unit variance scaling”, the difference between an individual mea-

sure and the mean value of the given variable is divided by the
standard deviation of the respective variable. In this case, all vari-
ables get the same weight. Low-level analytes have the same chance
as have high-level analytes to be indicative of differences between
individuals. On the other hand there is the danger that noise may
influence the model inappropriately. The so-called Pareto scaling
uses the square root of the standard deviation as the divisor and
is a compromise between the fore-mentioned procedures. In our
analysis, scaling did not improve the models. On the contrary it
deteriorated the predictivity of the models. Logarithmic transfor-
mation had already reduced the undue impact of the high-level
analytes.

4.2. Insight into dextromethorphan metabolism

Metabolites of DEX in human urine had been investigated by
GC–MS [28]. In this study, glucuronides were hydrolyzed by incuba-
tion with glucuronidase. Metabolites that carried a hydroxyl group
could therefore, have originated from glucuronides. One exam-
ple is hydroxy-DOR from excreted hydroxy-DORGlu as detected in
B 871 (2008) 349–356 355

e separation of extensive from poor metabolizers for CYP2D6

roduct ions Metabolitea

14, 256, 175, 113, 95, 85 DORGlu
58, 227, 201, 199, 185, 159, 157, 145, 133

00, 242, 175, 113, 95, 85 HOMGlu
44, 227, 215, 201, 199, 185, 159, 157, 145, 133

28, 270, 175, 113, 95, 85 Oxo-DORGlu
72, 227, 201, 199, 185, 159, 157, 145, 133

28, 270, 175, 113, 95, 85 Oxo-DORGlu
72, 227, 201, 199, 185, 159, 157, 145, 133

14, 256, 175, 113, 95, 85 Oxo-HOMGlu
58, 240, 199, 157, 145, 133

30, 272, 175, 113, 95, 85 Hydroxy-DORGlu
32, 274, 256, 227, 201, 199, 159, 157, 150, 145, 133

-O-glucuronide; Oxo-DORGlu, DORGlu with a methylene oxidized to a carbonyl
ORGlu, hydroxylated DORGlu.

our analysis. Oxidized DEX and MOM that carry a carbonyl group
instead of a methylene group (oxo-DEX and oxo-MOM) had also
been found in the cited report, but the analogue oxo-DOR and
oxo-HOM detected here in the form of glucuronides had not been
described. Metabolite profiling and multivariate analysis there-
fore, allowed detection of new pathway-specific metabolites. Their
impact on the metabolic ratio DEX/DOR remains to be investigated.

4.3. Urinary biomarkers: metabolomics and metabolite profiling

Analysis of compounds excreted in urine is an established
method for biomonitoring exposure of humans to specific com-
pounds. More recently, comprehensive analysis of a metabolic
fingerprint in a biological fluid was introduced as the field of
“metabolomics”. The hypothesis is that urine may contain biomark-
ers of functional changes or disease, under the assumption that a
given stimulus results in characteristic changes in the profile [29]. In
the past, the metabolite spectrum was dominated by the high-level
urinary constituents of biochemical pathways.

With the emergence of more refined analytical and statisti-
cal methods, additional types of investigations come into reach.
Metabolite profiling, i.e., the analysis of a full metabolic profile
of a substance is becoming a promising tool for preclinical drug
development [30–32], drug toxicity [33–36], and safety assessment

[37]. Exemplified in an animal model, pre-dose urinary metabolite
profiles of rats had been used to predict the ratio of paracetamol
glucuronide to paracetamol obtained post-dose from the individ-
ual rat. This approach shows promise in developing personalized
drug therapy [38,39], but to our knowledge no respective studies
in humans exist so far.

4.4. Applications of LC–MS/MS for class-specific metabolites

Mass spectrometry does not only allow for highly sensitive and
selective analysis of known molecules but also lends itself to ana-
lyze classes with common structural elements. In this study, we
showed the potential to do so for glucuronides that form an impor-
tant group of phase II metabolites. Neutral loss of 176 Da combined
with the characteristic glucuronic acid fragments 175, 113, 95, and
85 are highly indicative of a glucuronide conjugate.

Conjugation with sulfate results in another important class of
phase II metabolites. The changes in sulfate conjugation have been
investigated after gentamicin-induced nephrotoxicity in the rat by
monitoring a neutral loss of 80 [40]. Another group has developed a
method for profiling sulfoconjugates in human urine and compared
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the neutral loss of 80 with precursor ion scanning of m/z 80 (SO3
−)

and m/z 97 (HSO4
−). The method was applied to the characteriza-

tion of urinary biomarkers for heavy metal toxicity in rats [41]. The
same authors used a quadrupole ion trap for metabolite profiling of
rat urine for various chemical families, including carboxylic acids,
amines, sulfated compounds, glucuronides and glycosides, based
on information-dependent acquisition of product ion spectra [42].

The same analytical principle can be applied to investigate the
reaction products of electrophilic intermediates originating from
epoxides, quinones or aldehydes. They react with nucleophilic
groups such as thiols or amino groups to form conjugates for
instance with glutathione or adducts with cysteine or lysine. Excre-
tion of the resulting mercapturic acids or cysteine/lysine adducts
can be analyzed by MS in a class-specific manner on the basis of
their characteristic neutral losses and fragmentation. Neutral loss
of 129 Da is characteristic for N-acetyl-cysteine, 171 Da for N-acetyl-
lysine [18,26,43].

Formation of reactive intermediates in the metabolism of drugs
is a major problem in drug development because adduct forma-
tion with protein can result in cell death. Analysis of mercapturic
acids in urine of animals treated with the respective compound
could provide an early warning against putative reactive metabo-
lites. Similarly, reaction with nucleophilic sites of DNA nucleotides
would be indicative for a mutagenic and carcinogenic potential
and could be discovered on the basis of a neutral loss of 116 (2′-
deoxyribose) from carcinogen nucleoside adducts excreted in urine
[16].

In addition to these applications for toxicity testing of com-
pounds in development, the investigation of individual differences
in metabolism could even be more refined than for the phenotyping
of polymorphically expressed enzymes as presented here. Modula-

tion of metabolism by co-medication with drugs with inhibiting or
inducing activity, smoking, nutrition, or occupational and environ-
mental exposures could be studied. This would protect individuals
from potentially toxic exposures and result in a big step forward
towards personalized drug therapy.
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